Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{2 & 2 & 0 \\ 1 & 1 & 0 \\ -3 & -3 & 0 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
| \(\vec{v}={}\) |
Unlock full access