Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{12 & -32 & 20 \\ -6 & 16 & -10 \\ -15 & 40 & -25 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
\(\vec{v}={}\) |
Unlock full access