Meervoudige integralen: Toepassingen van meervoudige integralen
Inhoudsberekening van een 3D-gebied
De inhoud \(I\) van een gesloten en begrensd gebied \(R\) in de driedimensionale ruimte wordt gegeven door de volgende formule: \[I=\iiint_R\dd(x,y,z)\]
Bereken de inhoud van de tetraëder met hoekpunten \((0,0,0)\), \((2,2,0)\), \((0,2,0)\) en \((0,2,1)\).
\(\displaystyle\text{inhoud}={}\)\({{2}\over{3}}\)
De inhoud \(I\) van de tetraëder \(R\) met hoekpunten \((0,0,0)\), \((2,2,0)\), \((0,2,0)\) en \((0,2,1)\) is te berekenen als de drievoudige integraal van de constante functie \(f(x,y,z)=1\) op het gebied \(R\). Deze tetraëder \(R\) wordt begrensd door de vlakken \(x=0\), \(z=0\), \(y=2\) en \(2z=y-x\). Dit gebruiken we om de volgende herhaalde integraal op te stellen om de inhoud te berekenen: \[\begin{aligned}I &= \iiint_R \dd(x,y,z)\\[0.25cm] &= \int_{x=0}^{x=2}\left(\int_{y=x}^{y=2}\left(\int_{z=0}^{z={{1}\over{2}}y-{{1}\over{2}}x}\dd z\right)\dd y\right)\dd x\\[0.25cm] &=\int_{x=0}^{x=2}\left(\int_{y=x}^{y=2} ({{1}\over{2}}y-{{1}\over{2}}x)\,\dd y\right)\dd x\\[0.25cm] &= \int_{x=0}^{x=2}\biggl[{{1}\over{4}}y^2-{{1}\over{2}}xy\biggr]_{y=x}^{y=2}\;\dd x\\[0.25cm] &= \int_{x=0}^{x=2} \bigl(1-x+{{1}\over{4}}x^2\bigr)\,\dd x\\[0.25cm] &= \biggl[x-{{1}\over{2}}x^2+{{1}\over{12}}x^3\biggr]_{x=0}^{x=2}\\[0.25cm] &= {{2}\over{3}}\end{aligned}\]
Ontgrendel volledige toegang