Calculating with letters: Computing with letters
Factorisation of a quadratic polynomial via the sum-product method
A quadratic equation in the variable \(x\) is an expression of the form \[ax^2+bx+c=0\] for certain numbers \(a\), \(b\), and \(c\) with \(a\neq0\). The basic form of the sum-product method assumes \(a=1\).
The sum-product method
In the sum-product method, also called product-sum-method or factorisation by inspection, we try to factorise \(x^2+b\,x+c\) as \((x+p)(x+q)\) for certain \(p\) en \(q\). If you expand brackets in the factored form, then we get \[x^2+b\,x+c=x^2+(p+q)x+p\times q\text.\] Therefore, the task has become to find two numbers \(p\) and \(q\) such that \[p+q=b\quad\mathrm{and}\quad p\times q=c\]
Examples
\[x^2+3x+2=(x+1)(x+2)\] because \(1+2=3\) and \(1\times 2=2\).
\[x^2-x-12=(x-4)(x+3)\] because \(-4+3=-1\) and \(-4\times 3=-12\).
\(x^2-3x + 2={}\)\((x-2)(x-1)\).
We try to find integers \(p\) and \(q\) such that \(x^2-3x + 2=(x+p)(x+q)\).
Expansion of brackets in the right-hand side then gives: \[x^2-3x + 2=x^2+(p+q)x+p\times q\] So we try to find integers \(p\) and \(q\) so that \(p+q=-3\) and \(p \times q= 2\).
Because we may interchage \(p\) and \(q\) it suffices to choose \(p\) such that \(p^2\le 2\),
i.e., choosing \(p\) with \(|p|\le\sqrt{2}\approx 1.414\).
We make a table of possibilities integers: \[\begin{array}{||r|r|r||} \hline p & q & p+q\\ \hline 1 & 2 & 3\\ \hline -1 & -2 & -3\\ \hline \end{array}\] \(p=-2\) and \(q=-1\) meet the requirements.
The factorisation is: \[x^2-3x + 2=(x-2)(x-1)\]
We coupled the sum-product method to quadratic polynomials, but sometimes they are in disguise within the algebraic expressions. The examples below illustrate this.
\(t^{4}-7t^{3} + 12t^2={}\)\(t^2(t-3)(t-4)\).
Note first that all terms can be divided by \(t^2\) so that \[t^{4}-7t^{3} + 12t^2=t^2(t^2-7 t + 12)\] and that the quadratic polynomial between the brackets is in the form in which the product-sum method with integer coefficients is applicable.
Next we try to find integers \(p\) and \(q\) such that \(t^2-7 t + 12=(t+p)(t+q)\).
Expansion of brackets in the right-hand side then gives: \[t^2-7t + 12=x^2+(p+q)t+p\times q\] So we try to find integers \(p\) and \(q\) so that \(p+q=-7\) and \(p \times q= 12\).
Because we may interchage \(p\) and \(q\) it suffices to choose \(p\) such that \(p^2\le 12\),
i.e., choosing \(p\) with \(|p|\le\sqrt{12}\approx 3.464\).
We make a table of possibilities integers: \[\begin{array}{||r|r|r||} \hline p & q & p+q\\ \hline 1 & 12 & 13\\ \hline -1 & -12 & -13\\ \hline 2 & 6 & 8\\ \hline -2 & -6 & -8\\ \hline 3 & 4 & 7\\ \hline -3 & -4 & -7\\ \hline \end{array}\] \(p=-3\) and \(q=-4\) meet the requirements.
The factorisation is: \[t^2-7t + 12=(t-3)(t-4)\] The final result is: \[t^{4}-7t^{3} + 12t^2=t^2(t-3)(t-4)\]
Mathcentre video
Factorization of a Quadratic Equation by Inspection (42:36)