Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{-6 & 6 & 5 \\ 6 & -6 & -5 \\ -18 & 18 & 15 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
\(\vec{v}={}\) |
Unlock full access