Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{11 & 7 & 15 \\ 11 & 7 & 15 \\ -11 & -7 & -15 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
\(\vec{v}={}\) |
Unlock full access