Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{1 & 2 & -1 \\ 2 & 4 & -2 \\ 2 & 4 & -2 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
\(\vec{v}={}\) |
Unlock full access