Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{12 & -4 & 4 \\ -9 & 3 & -3 \\ -36 & 12 & -12 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
| \(\vec{v}={}\) |
Unlock full access