Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{3 & -5 & 3 \\ -9 & 15 & -9 \\ -15 & 25 & -15 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
| \(\vec{v}={}\) |
Unlock full access