Linear mappings: Linear mappings
Kernel and image of a matrix mapping
Let \(L_A: \mathbb{R}^3\longrightarrow \mathbb{R}^3\) be the linear mapping determined by the matrix \[A=\matrix{-6 & -5 & 13 \\ -36 & -30 & 78 \\ -18 & -15 & 39 \\ }\tiny. \] Calculate a vector \(\vec{v}\) that spans the image of \(L_A\).
| \(\vec{v}={}\) |
Unlock full access