×
units
abc
abc
abc
vector
logic
function
standard
α
β
δ
γ
ϵ
ζ
η
θ
ι
κ
λ
μ
ν
ξ
ο
π
ρ
σ
τ
υ
φ
χ
ψ
ω
Δ
Γ
Θ
Λ
Ξ
Σ
Φ
Ψ
Ω
abc
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
Q
W
E
R
T
Y
U
I
O
P
A
S
D
F
G
H
J
K
L
shift
Z
X
C
V
B
N
M
greek
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
q
w
e
r
t
y
u
i
o
p
a
s
d
f
g
h
j
k
l
shift
z
x
c
v
b
n
m
greek
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
{
.
.
.
.
.
.
[
,
]
i
,
∞
{
}
det
(
m
×
n
)
∙
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
p
∧
⊥
φ
∀
>
=
⊢
N
∅
∪
⊂
q
∨
⊤
ψ
∃
<
≠
⊨
Z
∈
∩
⊆
∄
→
□
⊕
P
≥
∖
Q
∉
⇒
⊬
⊃
¬
↔
◇
⧆
R
≤
⊭
≡
{
}
R
⇔
⊇
↵
(
)
C
↑
←
↓
→
x
y
a
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
[
,
]
<
ln
cos
lim
∞
[
,
)
≥
|
|
tan
e
,
(
,
]
≤
!
arc
π
a
{
.
.
.
.
.
.
(
,
)
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
∧
e
<
ln
cos
∨
π
≥
|
|
tan
all
≤
!
°
none
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
m
g
s
N
K
°C
cd
J
W
C
A
V
Ω
H
F
dB
Hz
mol
M
eV
Pa
bar
n
μ
m
c
d
da
h
k
M
G
units
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
∧
e
<
ln
cos
∨
π
≥
|
|
tan
all
≤
!
°
none
↵
(
)
C
↑
←
↓
→
x
y
#x#
Edit
1
2
3
4
5
Eigenvalues and eigenvectors: Eigenvalues and eigenvectors
The notion of eigenvalue and eigenvector
If \(\vec{v}\) is an eigenvector of the linear transformation \(L\), is it then necessarily also an eigenvector of the composition \(L \circ L\)?
Yes, and the eigenvalue always stays the same.
Yes, but the eigenvalue can be different.
No.
Unlock full access
About us
⋅
Help
⋅
Privacy
⋅
Terms and conditions
Copyright © 2025 SOWISO
×