Eigenvalues and eigenvectors: Eigenvalues and eigenvectors
Solving an eigenvalue problem
Solve the eigenvalue problem for the matrix \[
A = \matrix{-51 & 112 \\ -24 & 53}
\] In other words, determine the eigenvalues and vectors.
Response in the form of lists, and enter vectors with the input help in.
For example: \([\lambda_1,\lambda_2] \) \(=\) \( [1,2]\) and \( \left[\vec{u},\vec{v}\right] \) \(=\) \(\left[\cv{1\\2},\cv{3\\4}\right]\)
A = \matrix{-51 & 112 \\ -24 & 53}
\] In other words, determine the eigenvalues and vectors.
Response in the form of lists, and enter vectors with the input help in.
For example: \([\lambda_1,\lambda_2] \) \(=\) \( [1,2]\) and \( \left[\vec{u},\vec{v}\right] \) \(=\) \(\left[\cv{1\\2},\cv{3\\4}\right]\)
\(\left[\lambda_1,\lambda_2\right] = {}\) |
\(\left[\vec{u},\vec{v}\right] = {}\) |
Unlock full access