Multiple integrals: Triple integrals
Change of variables in triple integrals: spherical and cylindrical coordinates
Using cylindrical coordinates, calculate the triple integral \[\iiint_R (x^2+y^2+ z^2)\,\dd(x,y,z)\] where \[R=\{(x,y,z)\mid 0\le x^2+y^2\le 4,\;\; 0\le z\le 1\}\]
\(\iiint_R (x^2+y^2+ z^2)\,\dd(x,y,z)={}\) | \(\quad\)where \(R=\{(x,y,z)\mid 0\le x^2+y^2\le 4,\;\; 0\le z\le 1\}\) |
Unlock full access