Linear Algebra
Change of Basis
The linear map \(A \) from \( \mathbb{R}^2 \) into \(\mathbb R^2\) satisfies
\[\begin{aligned}
A\cv{-2\\-2} &= \cv{2\\-8}\\
A\cv{1\\2} &= \cv{-1\\7}\tiny{.}
\end{aligned}\]Determine the matrix of \( A\) with respect to the unit vectors.
\[\begin{aligned}
A\cv{-2\\-2} &= \cv{2\\-8}\\
A\cv{1\\2} &= \cv{-1\\7}\tiny{.}
\end{aligned}\]Determine the matrix of \( A\) with respect to the unit vectors.
The matrix of \(A={}\) |
Unlock full access