×
units
abc
abc
abc
vector
logic
function
standard
α
β
δ
γ
ϵ
ζ
η
θ
ι
κ
λ
μ
ν
ξ
ο
π
ρ
σ
τ
υ
φ
χ
ψ
ω
Δ
Γ
Θ
Λ
Ξ
Σ
Φ
Ψ
Ω
abc
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
Q
W
E
R
T
Y
U
I
O
P
A
S
D
F
G
H
J
K
L
shift
Z
X
C
V
B
N
M
greek
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
q
w
e
r
t
y
u
i
o
p
a
s
d
f
g
h
j
k
l
shift
z
x
c
v
b
n
m
greek
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
{
.
.
.
.
.
.
[
,
]
i
,
∞
{
}
det
(
m
×
n
)
∙
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
p
∧
⊥
φ
∀
>
=
⊢
N
∅
∪
⊂
q
∨
⊤
ψ
∃
<
≠
⊨
Z
∈
∩
⊆
∄
→
□
⊕
P
≥
∖
Q
∉
⇒
⊬
⊃
¬
↔
◇
⧆
R
≤
⊭
≡
{
}
R
⇔
⊇
↵
(
)
C
↑
←
↓
→
x
y
a
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
[
,
]
<
ln
cos
lim
∞
[
,
)
≥
|
|
tan
e
,
(
,
]
≤
!
arc
π
a
{
.
.
.
.
.
.
(
,
)
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
∧
∨
<
ln
cos
all
none
≥
|
|
tan
e
≤
!
π
°
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
m
g
s
N
K
°C
cd
J
W
C
A
V
Ω
H
F
dB
Hz
mol
M
eV
Pa
bar
n
μ
m
c
d
da
h
k
M
G
units
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
∧
∨
<
ln
cos
all
none
≥
|
|
tan
e
≤
!
π
°
↵
(
)
C
↑
←
↓
→
x
y
#x#
Edit
1
2
3
4
5
6
7
8
9
10
Linear Algebra
Eigensystems
If \(\vec{v}\) is an eigenvector of the linear transformation \(L\), is it then necessarily also an eigenvector of the composition \(L \circ L\)?
Yes, and the eigenvalue always stays the same.
Yes, but the eigenvalue can be different.
No.
Unlock full access
About us
⋅
Help
⋅
Privacy
⋅
Terms and conditions
Copyright © 2024 SOWISO
×