×
units
abc
abc
abc
vector
logic
function
standard
α
β
δ
γ
ϵ
ζ
η
θ
ι
κ
λ
μ
ν
ξ
ο
π
ρ
σ
τ
υ
φ
χ
ψ
ω
Δ
Γ
Θ
Λ
Ξ
Σ
Φ
Ψ
Ω
abc
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
Q
W
E
R
T
Y
U
I
O
P
A
S
D
F
G
H
J
K
L
shift
Z
X
C
V
B
N
M
greek
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
q
w
e
r
t
y
u
i
o
p
a
s
d
f
g
h
j
k
l
shift
z
x
c
v
b
n
m
greek
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
{
.
.
.
.
.
.
[
,
]
i
,
∞
{
}
det
(
m
×
n
)
∙
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
p
∧
⊥
φ
∀
>
=
⊢
N
∅
∪
⊂
q
∨
⊤
ψ
∃
<
≠
⊨
Z
∈
∩
⊆
∄
→
□
⊕
P
≥
∖
Q
∉
⇒
⊬
⊃
¬
↔
◇
⧆
R
≤
⊭
≡
{
}
R
⇔
⊇
↵
(
)
C
↑
←
↓
→
x
y
a
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
[
,
]
<
ln
cos
lim
∞
[
,
)
≥
|
|
tan
e
,
(
,
]
≤
!
arc
π
a
{
.
.
.
.
.
.
(
,
)
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
∧
∨
<
ln
cos
all
none
≥
|
|
tan
e
≤
!
π
°
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
m
g
s
N
K
°C
cd
J
W
C
A
V
Ω
H
F
dB
Hz
mol
M
eV
Pa
bar
n
μ
m
c
d
da
h
k
M
G
units
↵
(
)
C
↑
←
↓
→
x
y
#x#
units
abc
abc
abc
vector
logic
function
standard
7
8
9
+
4
5
6
−
1
2
3
÷
.
0
=
×
∗
×
√
a
■
>
log
sin
∧
∨
<
ln
cos
all
none
≥
|
|
tan
e
≤
!
π
°
↵
(
)
C
↑
←
↓
→
x
y
#x#
Edit
1
2
9. Simple Linear Regression: Simple Linear Regression
Simple Linear Regression
What is the purpose of
Simple Linear Regression
?
To determine whether there is a relationship between two categorical values.
To compare the means of two or more independent samples in order to determine if the underlying population means are different.
To model the linear relationship between two continuous variables.
To test hypotheses about the proportions of a population distribution.
Unlock full access
About us
⋅
Help
⋅
Privacy
⋅
Terms and conditions
Copyright © 2024 SOWISO
×