Linear mappings: Linear mappings
The inverse of a linear mapping
Let \(A\) be an \(n\times n\) matrix. This defines a matrix mapping \(L_A\) from \(\mathbb{R}^n\) into \(\mathbb{R}^n\). We can apply this mapping repeatedly. We denote \((L_A)^2=L_A\circ L_A\), \((L_A)^3=L_A\circ (L_A)^2\), etc. Then: \[(L_A)^n = L_{A^n}\]
Let \(A\) be an invertible \(n\times n\) matrix. This defines a matrix mapping \(L_A\) from \(\mathbb{R}^n\) into \(\mathbb{R}^n\). This mapping is then invertible, say with inverse denoted by \((L_A)^{-1}\). Then: \[(L_A)^{-1} = L_{A^{-1}}\]
Unlock full access