Complex numbers: Construction of complex numbers and complex arithmetic
Properties of conjugate and norm
Properties of complex conjugation
\overline{z-w}&=\overline{z}-\overline{w} \\ \\
\overline{z\cdot w}&=\overline{z}\cdot \overline{w}\\ \\
\overline{\left(\frac{z}{w}\right)}&=\frac{\overline{z}}{\overline{w}}\\ \\
\overline{\overline{z}}&=z\\ \\
\text{Re}(z)&= \frac{z+\overline{z}}{2}\\ \\
\text{Im}(z)&= \frac{z-\overline{z}}{2i} \end{aligned}\]
If \(z\) and \(w\) are two complex numbers, then:
\[\begin{aligned}\overline{z+w}&=\overline{z}+\overline{w}\\ \\\overline{z-w}&=\overline{z}-\overline{w} \\ \\
\overline{z\cdot w}&=\overline{z}\cdot \overline{w}\\ \\
\overline{\left(\frac{z}{w}\right)}&=\frac{\overline{z}}{\overline{w}}\\ \\
\overline{\overline{z}}&=z\\ \\
\text{Re}(z)&= \frac{z+\overline{z}}{2}\\ \\
\text{Im}(z)&= \frac{z-\overline{z}}{2i} \end{aligned}\]
Properties of the norm
|z\cdot w|&=|z|\cdot |w|\\ \\
\left|\frac{z}{w}\right|&=\frac{|z|}{|w|}\\ \\
|\overline{z}|&= |z|\end{aligned}\]
If \(z\) and \(w\) are two complex numbers, then:
\[\begin{aligned} |z+w|\; &\le |z|+|w|\\ \\|z\cdot w|&=|z|\cdot |w|\\ \\
\left|\frac{z}{w}\right|&=\frac{|z|}{|w|}\\ \\
|\overline{z}|&= |z|\end{aligned}\]
Any complex number \(\zeta\) is a solution of the following quadratic equation with reël coefficients \(a=\text{Re}(\zeta)\) and \(r^2=|\zeta|^2\): \[z^2-2a\cdot z+r^2 = 0\tiny.\]
Unlock full access