Bioelektriciteit: Simulaties van neurale modellen (Engelstalig, m.b.v EjsS)
Full Wilson model
Simulation of the full Wilson model
Wilson added to his basic model for mammalian neocortical neurons two terms: One term, named the T-channel, is connected to a voltage-gated calcium channel and and another term, named the H-channel, is connected to a calcium-mediated potassium channel. The system of equations becomes:\[\begin{aligned} {C_m} \cdot \frac{{dV}}{{dt}} &= - {g_{{\rm{Na}}}}(V) \cdot (V - {E_{{\rm{Na}}}}) - {g_{\rm{K}}} \cdot R \cdot (V - {E_{\rm{K}}})\\ &\phantom{=} - {g_{\rm{T}}} \cdot T \cdot (V - {E_{\rm{T}}}) - {g_{\rm{H}}} \cdot H \cdot (V - {E_{\rm{H}}}) + {I_{{\rm{stim}}}} \\ \tau _{\rm{R}} \cdot \frac{{dR}}{{dt}} &= {R_{\infty}}(V) - R\\ \tau _{\rm{T}} \cdot \frac{{dT}}{{dt}} &= {T_{\infty}}(V) - T\\ \tau _{\rm{H}} \cdot \frac{{dH}}{{dt}} &= 3T-H\\ \end{aligned}\] where \(V\) is the membrane potential, \(E_X\) is a reference value for a given channel \(X\), and \[\begin{aligned} {g_{{\rm{Na}}}}(V) &= 17.8 + 0.476\,\,V + 33.8 \cdot {10^{ - 4}}\,{V^2}\\ {R_\infty }(V) &= 1.24 + 0.037\,V + 3.2\, \cdot {10^{ - 4}}\,{V^2}\\ {T_\infty }(V) &= 4.205 + 0.116\,V + 8.1\, \cdot {10^{ - 4}}\,{V^2}\\ \tau_{\rm{T}} &= 14\\ \tau_{\rm{H}}&=45\\ g_{\rm{K}} & =26\\ \end{aligned}\] The full Wilson model is rescaled in the same way as the basic Wilson model in order to avoid numerical problems dutring the solving process.