Differentiation, derivatives and Taylor approximations: Differentiating power functions
The derivative of a power function
First an example of a derivative of a power function, calculated via the basic definition of derivative.
Calculate the difference quotient of \(f(x)=x^{4}\) over the interval \([x,x+{\vartriangle}x]\) and determine the derivative function \(f'(x)\).
\[\begin{aligned}
\frac{{\vartriangle}f}{{\vartriangle}x} &= \frac{f(x+{\vartriangle}x)-f(x)}{{\vartriangle}x}\\ \\
&= \frac{(x+{\vartriangle}x)^{4}-x^{4}}{{\vartriangle}x} \\ \\
&= \frac{x^4+4x^3\cdot({\vartriangle}x)+6x^2\cdot({\vartriangle}x)^2+4x\cdot({\vartriangle}x)^3+({\vartriangle}x)^4-x^{4}}{{\vartriangle}x} \\ \\
&= 4x^3+6x^2\cdot({\vartriangle}x)+4x\cdot({\vartriangle}x)^2+({\vartriangle}x)^3\\ \\
&\to {4}x^{3}\quad\mathrm{if\;}{\vartriangle}x\to 0
\end{aligned}\]
So: \(f'(x)={4}x^{3}\)
\frac{{\vartriangle}f}{{\vartriangle}x} &= \frac{f(x+{\vartriangle}x)-f(x)}{{\vartriangle}x}\\ \\
&= \frac{(x+{\vartriangle}x)^{4}-x^{4}}{{\vartriangle}x} \\ \\
&= \frac{x^4+4x^3\cdot({\vartriangle}x)+6x^2\cdot({\vartriangle}x)^2+4x\cdot({\vartriangle}x)^3+({\vartriangle}x)^4-x^{4}}{{\vartriangle}x} \\ \\
&= 4x^3+6x^2\cdot({\vartriangle}x)+4x\cdot({\vartriangle}x)^2+({\vartriangle}x)^3\\ \\
&\to {4}x^{3}\quad\mathrm{if\;}{\vartriangle}x\to 0
\end{aligned}\]
So: \(f'(x)={4}x^{3}\)
The pattern is clear after looking at enough examples.
Derivative of a power function The derivative of the function \(f(x)=x^p\) is equal to \(f'(x)=p\cdot x^{p-1}\) for any real number \(p\) and for any \(x\) in case the powers \(x^p\) and \(x^{p-1}\) have meaning.
\(\phantom{x}\)
Mathcentre video
Differentiating Powers by First Principles (14:56)
Unlock full access