Differentiation, derivatives and Taylor approximations: Differentiating power functions
The derivative of a power function
First an example of a derivative of a power function, calculated via the basic definition of derivative.
Calculate the difference quotient of \(f(x)=x^{2}\) over the interval \([x,x+{\vartriangle}x]\) and determine the derivative function \(f'(x)\).
\[\begin{aligned}
\frac{{\vartriangle}f}{{\vartriangle}x} &= \frac{f(x+{\vartriangle}x)-f(x)}{{\vartriangle}x}\\ \\
&= \frac{(x+{\vartriangle}x)^{2}-x^{2}}{{\vartriangle}x} \\ \\
&= \frac{x^2+2x\cdot({\vartriangle}x)+({\vartriangle}x)^2-x^{2}}{{\vartriangle}x} \\ \\
&= 2x+({\vartriangle}x)\\ \\
&\to {2}x\quad\mathrm{if\;}{\vartriangle}x\to 0
\end{aligned}\]
So: \(f'(x)={2}x\)
\frac{{\vartriangle}f}{{\vartriangle}x} &= \frac{f(x+{\vartriangle}x)-f(x)}{{\vartriangle}x}\\ \\
&= \frac{(x+{\vartriangle}x)^{2}-x^{2}}{{\vartriangle}x} \\ \\
&= \frac{x^2+2x\cdot({\vartriangle}x)+({\vartriangle}x)^2-x^{2}}{{\vartriangle}x} \\ \\
&= 2x+({\vartriangle}x)\\ \\
&\to {2}x\quad\mathrm{if\;}{\vartriangle}x\to 0
\end{aligned}\]
So: \(f'(x)={2}x\)
The pattern is clear after looking at enough examples.
Derivative of a power function The derivative of the function \(f(x)=x^p\) is equal to \(f'(x)=p\cdot x^{p-1}\) for any real number \(p\) and for any \(x\) in case the powers \(x^p\) and \(x^{p-1}\) have meaning.
\(\phantom{x}\)
Mathcentre video
Differentiating Powers by First Principles (14:56)
Unlock full access