Trigonometry: Trigonometric functions
Addition formulas, double angle formulas, and other trigonometric identities
Addition formulas The following three addition formulas also belong to the basic trigonometric formulas, but you do not need to know them by heart:
\[\begin{aligned}
\sin (\alpha + \beta ) &= \sin(\alpha) \cos(\beta) + \cos(\alpha)\sin(\beta)\\ \\
\cos (\alpha + \beta ) &= \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \\ \\
\tan (\alpha + \beta ) &= \frac{\tan(\alpha) +\tan(\beta)}{1 - \tan(\alpha) \tan(\beta)} \\ \\
\end{aligned}\]
Double angle formulas Replacing \(\beta\) by \(\alpha\) in addition formulas gives the following double angle formulas
\[\begin{aligned}
\sin(2 \alpha) &= 2 \sin(\alpha) \cos(\alpha)\\ \\
\cos(2 \alpha) &= \cos(\alpha)^2 - \sin(\alpha)^2\\ \\ &= 2\cos(\alpha)^2 - 1\\ \\ &= 1 - 2\sin(\alpha)^2\\ \\
\tan (2\alpha ) &= \frac{2\tan(\alpha)}{1 - \tan(\alpha)^2}
\end{aligned}\]
Only the first two double angle formulas you need to know by heart.
Subtraction formulas Replacing \(\beta\) by \(-\beta\) in addition formulas gives
\[\begin{aligned}
\sin (\alpha - \beta ) &= \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta)\\ \\
\cos (\alpha - \beta ) &= \cos(\alpha) \cos (\beta) + \sin(\alpha) \sin(\beta)\\ \\
\tan (\alpha + \beta ) &= \frac{\tan(\alpha) -\tan(\beta)}{1+\tan(\alpha) \tan(\beta)}
\end{aligned}\]
You do not need to know the identities by heart, and also not the next product formulas, and sum and difference formulas.
Product formulas Combination of earlier formulas leads to the following product formulas for sine and cosine:
\[\begin{aligned}
\sin (\alpha) \cos(\beta ) &= \tfrac{1}{2}\bigl(\sin(\alpha+\beta) + \sin(\alpha-\beta)\bigr)\\ \\
\cos (\alpha) \cos(\beta ) &= \tfrac{1}{2}\bigl(\cos(\alpha+\beta) + \cos(\alpha-\beta)\bigr)\\ \\
\sin (\alpha) \sin(\beta ) &= \tfrac{1}{2}\bigl(\cos(\alpha+\beta) - \cos(\alpha-\beta)\bigr) \\ \\
\end{aligned}\]
Sum and difference formulas The following formulas for sum and difference of trigonometric functions can be derived:
\[\begin{aligned}
\sin (\alpha) + \sin(\beta ) &= 2\sin\biggl(\frac{\alpha+\beta}{2}\biggr) \cos\biggl(\frac{\alpha-\beta}{2}\biggr)\\ \\
\sin (\alpha) - \sin(\beta ) &= 2\sin\biggl(\frac{\alpha-\beta}{2}\biggr) \cos\biggl(\frac{\alpha+\beta}{2}\biggr)\\ \\
\cos (\alpha) + \cos(\beta ) &= 2\cos\biggl(\frac{\alpha+\beta}{2}\biggr) \cos\biggl(\frac{\alpha-\beta}{2}\biggr)\\ \\
\cos (\alpha) - \cos(\beta ) &= -2\sin\biggl(\frac{\alpha+\beta}{2}\biggr) \sin\biggl(\frac{\alpha-\beta}{2}\biggr)
\end{aligned}\]
These formulas can also be used to compute special function values.
\begin{eqnarray*}
\sin\left(\frac{\pi}{12}\right)&=&\sin\left(\frac{\pi}{3}-\dfrac{\pi}{4}\right)\\
&=&\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right)-\cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)\\
&=&\dfrac{\sqrt{3}}{2}\cdot\frac{1}{\sqrt{2}}-\dfrac{1}{2}\cdot\frac{1}{\sqrt{2}}\\
&=&\frac{\sqrt{3}-1}{2\sqrt{2}}\tiny.
\end{eqnarray*}Alternative ways to split one twelfth:\[\frac{1}{12}=\frac{1}{3}-\frac{1}{4}=\frac{1}{4}-\frac{1}{6}=\frac{5}{12}-\frac{1}{3}=\frac{7}{12}-\frac{1}{2}\tiny .\] You can solve this exercise in different ways, but the result is always the same.
Mathcentre videos
The Double Angle Formula (26:33)
Trigonometric Identities (40:17)