Trigonometry: Inverse trigonometric functions
Trigonometric equations
Terminology We speak of a trigonometric equation in \(x\) if it cn be reduced to the form \[\sin\bigl(a(x+b)\bigr)=c\] with instead of \(\sin\) also trigonometric functions \(\cos\) or \(\tan\) and with given parameter values \(a,b,c\).
Have a look at a number of examples.
We are actually looking for the intersections of the graph of sine function with the line \(y=-1\). We make use of the unit circle because then the problem can be translated into the finding of points of intersection of the unit circle with the #y#-axis and into searching the angles of rotation that move the point #A=(1,0)# on the unit circle to these points of intersection.
The point #(0,-1)# is the intersection point from the unit circle with the #y#-axis dat verkregen wordt by truning the point #A=(1,0)# turning over an angle #-\tfrac{1}{2}\!\pi#. But there are many more rotation angles about #A# move there. Be an integral multiple of at each rotation angle \(2\pi\) add or subtract. This gives #x=-\tfrac{1}{2}\!\pi+k\cdot2\pi# surely integer \(k\) . so:
The solution of the equation \(\sin x=-1\) is of the form \(x=-\tfrac{1}{2}\!\pi+k\cdot2\pi\) with \(k\) an arbitrary integer.
Warning
The temptation is great on both sides of the equation \(\sin(x)=-1\) function #\arcsin# apply. You get \(\arcsin\bigl(\sin(x)\bigr)=\arcsin(-1)\) and you might think you can use that #\sin# and #\arcsin# inverses each other and that therefore common #x=\arcsin(-1)=-{{\pi}\over{2}}# .
But then you've just found one solution! This is because #\arcsin\bigl(\sin(x)\bigr)=x# only applies to the segment #[-\tfrac{1}{2}\!\pi,\tfrac{1}{2}\!\pi]# and have you found a solution in this segment. You have to figure out what multiple of #\pi# may be hereby added or subtracted.
The solution of the equation \(\;\sin(x)=c\;\) is \[x=\arcsin(c)+k\cdot 2{\pi}\quad\lor\quad x=\pi-\arcsin(c)+k\cdot 2{\pi}\tiny.\]
The solution of the equation \(\;\cos(x)=c\;\) is \[x=\arccos(c)+k\cdot 2{\pi}\quad\lor\quad x=-\arccos(c)+k\cdot 2{\pi}\tiny.\]
The solution of the equation \(\;\sin(x)=\sin(y)\;\) is \[x=y+k\cdot 2{\pi}\quad\lor\quad x={\pi}-y+k\cdot 2{\pi}\tiny.\]
The solution of the equation \(\;\cos(x)=\cos(y)\;\) is \[x=y+k\cdot 2{\pi}\quad\lor\quad x=-y+k\cdot 2{\pi}\tiny.\]
The example below illustrates that you sometimes need trigonometric identities to solve trigonmetric equations.
Determine the exact soultions of the equation \(\sin(4x)=\cos(2x)\).
Solution
\(x=\frac{\pi}{4}+k \cdot \frac{\pi}{2} \quad\vee\quad x=\frac{\pi}{12}+k \cdot \pi \quad\vee\quad x=\frac{5\pi}{12}+k \cdot \pi \)
The reduction can go as follows: \[\begin{aligned} &\sin(4x)=\cos(2x)\\[0.25cm] &2\sin(2x)\cos(2x)=\cos(2x)\\[0.25cm] &2\sin(2x)\cos(2x)-\cos(2x)=0\\[0.25cm] &\cos(2x)\left( 2\sin(2x)-1 \right)=0\\[0.25cm] &\cos(2x)=0 \quad\vee\quad 2\sin(2x)-1=0\\[0.25cm] &\cos(2x)=0 \quad\vee\quad \sin(2x)=\frac{1}{2}\\[0.25cm] &2x=\frac{\pi}{2}+k \cdot \pi \quad\vee\quad 2x=\frac{\pi}{6}+k \cdot 2\pi \quad\vee\quad 2x=\frac{5\pi}{6}+k \cdot 2\pi\\[0.25cm] &x=\frac{\pi}{4}+k \cdot \frac{\pi}{2} \quad\vee\quad x=\frac{\pi}{12}+k \cdot \pi \quad\vee\quad x=\frac{5\pi}{12}+k \cdot \pi \end{aligned}\]
Mathcentre video
Solving Trigonometric Functions (44:12, in graden en radialen)