Exponentiële functies en logaritmen: Logaritmen
Vergelijkingen en ongelijkheden die logaritmen met verschillend grondtal bevatten
Wanneer er in een vergelijking of ongelijkheid logaritmen met een verschillend grondtal aanwezig zij, dan helpt de rekenregel \[\log_g(x) =\frac{\log_h(x)}{\log_h(g)}\] om alle logaritmen om te zetten naar logaritmen met hetzelfde grondtal.
Onderstaande voorbeelden laten zien het dat gaat.
\(x={}\)\(64\)
De gegeven vergelijking is: \[\log_{4}(x)+\log_{64}(x)=4\] De eerste stap is om de grondtallen aan elkaar gelijk maken. Welk grondtal je neemt maakt niet uit. Hier stellen we de grondtallen gelijk aan \(4\). Dus: \[\log_{4}(x)+\frac{\log_{4}(x)}{\log_{4}(64)}=4\] Het linkerlid kan verder vereenvoudigd worden: \[\begin{aligned}\log_{4}(x)+\frac{\log_{4}(x)}{\log_{4}(4^{3})}&=\log_{4}(x)+\frac{\log_{4}(x)}{3}\\[0.25cm] &=\log_{4}(x)\bigg(1+\frac{1}{3}\bigg)=\frac{4}{3}\log_{4}(x)\\[0.25cm]\end{aligned}\] Dus \[\frac{4}{3}\log_{4}(x)=4\] oftewel \[\log_{4}(x)=3\] Op basis van de definitie van de logaritme met grondtal 4 krijgen we dan: \[\begin{aligned}x&=4^{3}\\[0.25cm] &=64\end{aligned}\]
De gegeven vergelijking is: \[\log_{4}(x)+\log_{64}(x)=4\] De eerste stap is om de grondtallen aan elkaar gelijk maken. Welk grondtal je neemt maakt niet uit. Hier stellen we de grondtallen gelijk aan \(4\). Dus: \[\log_{4}(x)+\frac{\log_{4}(x)}{\log_{4}(64)}=4\] Het linkerlid kan verder vereenvoudigd worden: \[\begin{aligned}\log_{4}(x)+\frac{\log_{4}(x)}{\log_{4}(4^{3})}&=\log_{4}(x)+\frac{\log_{4}(x)}{3}\\[0.25cm] &=\log_{4}(x)\bigg(1+\frac{1}{3}\bigg)=\frac{4}{3}\log_{4}(x)\\[0.25cm]\end{aligned}\] Dus \[\frac{4}{3}\log_{4}(x)=4\] oftewel \[\log_{4}(x)=3\] Op basis van de definitie van de logaritme met grondtal 4 krijgen we dan: \[\begin{aligned}x&=4^{3}\\[0.25cm] &=64\end{aligned}\]
Ontgrendel volledige toegang