Solving linear equations and inequalities: Linear inequalities in one unknown
Solving a linear inequality via equations
You can also solve a linear inequality by
- first replacing the inequality sign by an equal sign,
- then solving this equation, and
- finally, determining the sign of the inequality for point to the left and to the right of the solution of the equation.
Determine the exact solution of the inequality \[2x + 9 \ge -4x -21\] via equations.
\(x \ge -5\)
We follow the following roadmap:
- Get started with the corresponding equation \[2x + 9 = -4x -21\]
- Solve this equation:
- Get the terms with \(x\) on the left-hand side of the equation (by adding \(4x\) on both sides):
\(2x + 9 +4x = -4x -21 +4x\), which simplifies to \(6x +9 = -21\). - Then move the terms without \(x\) to the right (by adding \(-9\) both sides):
\(6x +9 - 9 = -21 - 9\), which simplifies to \(6x = -30\).- Next, divide the left- and right-hand side by the coefficient of \(x\) (which is here \(6\)); this gives \(x = \;\frac{-30}{6}\).
- So, the solution of the equation is \(x = {-5}\).
- Get the terms with \(x\) on the left-hand side of the equation (by adding \(4x\) on both sides):
- Find out whether the solutions are on the number line to the left or to the right of \(-5\).
- First calculate the left- and right-hand sides of the inequality \(2x + 9 \ge -4x -21\) when you substitute a value of \(x\) less than or equal to \(-5\). For example, when you fill in \(x=-10\), then you get \(-11 \ge 19\) and this is a false statement. Any other value of \(x\) less than or equal to \(-5\) may be used too, and you still get a false statement.
- Then calculate the left- and right-hand sides of the inequality \(2x + 9 \ge -4x -21\) when you substitute a value of \(x\) greater than or equal to \(-5\). For example, when you fill in \(x=10\), then you get \(29 \ge -61\) and this is a true statement. Any other value of \(x\) greater than or equal to \(-5\) may be used too, and you still get a true statement.
- From these two numeric examples follows that solutions \(x\) of \(2x + 9 \ge -4x -21\) must satisfy \(x \ge -5\).
The points where the inequality holds are shown in green in the number line below. An open circle around \(x=-5\) indicates that we are dealing with an inequality of the type \(\lt\) or \(\gt\), where in this case the point itself is not a solution. A closed circle indicates an inequality of the type \(\le\) or \(\ge\), and then the point marked on the number line is element of the solution set.
Unlock full access