4. Probability Distributions: Random Variables
Sums of Random Variables
Sum of Independent Random Variables
Suppose two independent random variables #Y# and #Z# are added to give a new variable #X#. Then their sum is also a random variable, with the following expected value and variance:
- #\mathbb{E}[X] = \mathbb{E}[Y] + \mathbb{E}[Z]#
- #Var[X] = Var[Y] + Var[Z]#
If, in contrast, #Y# and #Z# are subtracted, then the expected value and variance new variable #X# are
- #\mathbb{E}[X] = \mathbb{E}[Y] - \mathbb{E}[Z]#
- #Var[X] = Var[Y] + Var[Z]#
If a random variable #Y# is multiplied with a constant #p#, the resulting variable #X# has the following properties.
- #\mathbb{E}[X] = p \cdot \mathbb{E}[Y]#
- #Var[X] = p^2 \cdot Var[Y]#
- #SD[X] = |p| \cdot SD[Y]#
Suppose:
#\,\,\,\,\,\,\,\,\scriptsize{\bullet}# #\,\mathbb{E}[Y]= 5.3\phantom{0}##\,\,\,\,\,\,\,\,\scriptsize{\bullet}# #\,Var[Y]= 1.66##\,\,\,\,\,\,\,\,\scriptsize{\bullet}# #\,\mathbb{E}[Z]= 5.1\phantom{0}##\,\,\,\,\,\,\,\,\scriptsize{\bullet}# #\,Var[Z]= 1.21#
#\,\,\,\,\,\,\,\,\scriptsize{\bullet}# #\,X= 2Y + 5Z#
Find #\mathbb{E}[X]#.
To calculate #\mathbb{E}[X]#, make use of the following properties:
- If #X = Y+Z#, then #\mathbb{E}[X] = \mathbb{E}[Y] + \mathbb{E}[Z]#.
- If #X = k\cdot Y#, then #\mathbb{E}[X] = k \cdot \mathbb{E}[Y]#.
Applying these properties to #X= 2Y + 5Z #, we get:
\[\begin{array}{rcl}
\mathbb{E}[X] &=& \mathbb{E}[2Y + 5Z]\\
&=& \mathbb{E}[2Y] + \mathbb{E}[5Z]\\
&=& 2\cdot \mathbb{E}[Y] + 5 \cdot \mathbb{E}[Z]\\
&=& 2\cdot 5.3 + 5 \cdot5.1\\
&=& 36.1
\end{array}\]
Sum of Dependent Random Variables
Suppose two dependent random variables #Y# and #Z# are added to give a new variable #X#. Then their sum is also a random variable, with the following expected value and variance:
- #\mathbb{E}[X] = \mathbb{E}[Y] + \mathbb{E}[Z]#
- #Var[X] = Var[Y] + Var[Z] + 2Cov[Y,Z]#
If, in contrast, #Y# and #Z# are subtracted, then the expected value and variance new variable #X# are
- #\mathbb{E}[X] = \mathbb{E}[Y] - \mathbb{E}[Z]#
- #Var[X] = Var[Y] + Var[Z] - 2Cov[Y,Z]#
The above behaviour follows form the general rule for adding variablels #Y# and #Z# multiplied by respectively constants #p# and #q# to give a new variable #X#:
- #\mathbb{E}[X] = p \cdot \mathbb{E}[Y] + q \cdot \mathbb{E}[Z]#
- #Var[X] = p^2 \cdot Var[Y] + q^2 \cdot Var[Z] + 2pq \cdot Cov[Y,Z]#