Naive set theory: Elementary notions and notations
Operations on sets: intersection, union, difference, and complement
Sets can be combined in various ways.
Intersection of sets
Intersection
The intersection of two sets \(A\) and \(B\), denoted as \(A\cap B\), is the set of all elements that belong to \(A\) and to \(B\). In formula form: \[A\cap B=\{x \mid x\in A\text{ and } x\in B\}\] We call two sets \(A\) and \(B\) disjoint if \(A\cap B=\emptyset\).
Analogously, the intersection of indexed sets \(X_i\): \[\begin{aligned}\underset{i=1}{\overset{n}{\cap}}X_i&=X_1\cap X_2\cap X_3\cap \cdots\cap X_n\\ \underset{i=1}{\overset{\infty}{\cap}}X_i&=X_1\cap X_2\cap X_3\cap \cdots\end{aligned} \]
Examples
\[\{1,2,3\}\cap \{2,3,4\}=\{2,3\}\] \[[0,\infty)\cap (-1, 1)=[0,1)\] \[\{1,2\}\cap \{3,4\}=\emptyset\] \[\{1,2\}\cap \emptyset=\emptyset\]
If \(X_i=\{x\mid x\in\mathbb{Z}^{+}\text{ and }x\ge i\}\), then \[\begin{aligned}\underset{i=1}{\overset{n}{\cap}}X_i&= \{x\mid x\in\mathbb{Z}^{+}\text{ and }x\ge n\}\\ \underset{i=1}{\overset{\infty}{\cap}}X_i&=\emptyset\end{aligned} \]
For all sets \(A\), \(B\), and \(C\):
- \(\cap\) is idempotent: \(A\cap A= A\).
- \(\cap\) is commutative: \(A\cap B= B\cap A\).
- \(\cap\) is associative: \(A\cap(B\cap C)= (A\cap B)\cap C\).
- \(A\subset B\) if and only if \(A\cap B=A\).
- \(A\cap \emptyset=\emptyset\).
- \((A\cap B)\subset A\) and \((A\cap B)\subset B\).
- If \(A\subset B\) then \((A\cap C)\subset (B\cap C)\).
- If \(C\subset A\) and \(C\subset B\) then \(C\subset(A\cap B)\).
Union of sets
Union
The union of two sets \(A\) and \(B\), denoted as \(A\cup B\), is the set of all elements that belong to \(A\) or to \(B\). In formula form: \[A\cup B=\{x \mid x\in A\text{ or } x\in B\}\]
Analogously, the union of indexed sets \(X_i\): \[\begin{aligned}\underset{i=1}{\overset{n}{\cup}}X_i&=X_1\cup X_2\cup X_3\cup \cdots\cup X_n\\ \underset{i=1}{\overset{\infty}{\cup}}X_i&=X_1\cup X_2\cup X_3\cup \cdots\end{aligned} \]
Examples
\[\{1,2,3\}\cup \{2,3,4\}=\{1,2,3,4\}\] \[[0,\infty)\cup (-1, 1)=(-1,\infty)\] \[\{1,2\}\cup \{2\}=\{1,2\}\] \[\{1,2\}\cup \emptyset=\{1,2\}\]
If \(X_i=\{x\mid x\in\mathbb{R}\text{ and }0\lt x\le i\}\), then \[\begin{aligned}\underset{i=1}{\overset{n}{\cup}}X_i&= \{x\mid x\in\mathbb{R}\text{ and }0\lt x\le n\}\\ \underset{i=1}{\overset{\infty}{\cup}}X_i&=\mathbb{R}^{+}\end{aligned} \]
For all sets \(A\), \(B\), and \(C\):
- \(\cup\) is idempotent: \(A\cup A=A\).
- \(\cup\) is commutative: \(A\cup B= B\cup A\).
- \(\cup\) is associative: \(A\cup(B\cup C)= (A\cup B)\cup C\).
- \(A\subset B\) if and only if \(A\cup B=B\).
- \(A\cup \emptyset=A\).
- \(A\subset(A\cup B)\) and \(B\subset(A\cup B)\)
- If \(A\subset B\) then \((A\cup C)\subset (B\cup C)\).
- \((A\cup B)\subset C\) if and only if \(A\subset C\) and \(B\subset C\).
Absorption laws For all sets \(A\) and \(B\):
- \(A\cap(A\cup B)=A\).
- \(A\cup(A\cap B)=A\).
Distributive laws For all sets \(A\), \(B\), and \(C\):
- \(A\cap(B\cup C)=(A\cap B)\cup(A\cap C)\).
- \(A\cup(B\cap C)=(A\cup B)\cap(A\cup C)\).
Difference of sets and complement
Difference and complement
If \(A\) and \(B\) are sets, then the difference of A and B , denoted \(A\backslash B\), is the set of all elements that belong to \(A\) and not to \(B\). In formula form: \[A\backslash B=\{x \mid x\in A\text{ en } x\notin B\}\] If \(A\) is the universe \(U\) from which elements of \(B\) have been chosen, then we call \(U\backslash B\) the complement of \(B\) and we denote this as \(B^c\).
From the definition of difference it immediately follows that for every set \(A\) and the universe \(U\): \[\begin{aligned}A\backslash \emptyset &=A\\ A\backslash A &=\emptyset \\ \emptyset^{c}&=U\\ U^c&=\emptyset\end{aligned}\] .
Examples
\[\{1,2,3\}\backslash\{1,3,5\}=\{2\}\] \[[0,\infty)\backslash (-1, 1)=[1,\infty)\] \[\{1,2\}\backslash\{3,4\}=\{1,2\}\] If \(U=\mathbb{Z}\), then \[\{0\}^c=\{n\in \mathbb{Z}\mid n\neq 0\}\] If \(U=\mathbb{R}\), then \[\begin{aligned}(-1,1){}^{c} &=(-\infty,-1]\cup[1,\infty)\\ &=\{x \mid x\le -1\text{ of } x\ge 1\}\end{aligned}\]
Symmetric difference of sets
Symmetric difference
The symmetric difference of two sets \(A\) and \(B\), denoted as \(A\triangle B\), is in formula form: \[A\triangle B=(A\backslash B)\cup(B\backslash A)\text.\] For non-disjoint sets, the Venn diagram below corresponds to this (see later in this section).
This Venn diagram also illustrates: \[\begin{aligned} A\triangle B&=(A\cup B)\backslash (A\cap B)\\[0.25cm] A\triangle B&=B\triangle A\end{aligned}\]
Examples
\[\begin{aligned}\{1,2\}\triangle \{2,3,4\}&=\{1,3,4\}\\[0.25cm] \{a,b,c\}\triangle \{b,c,d\} &= \{a,d\}\end{aligned}\]
For a set \(A\) the following applies: \[A\triangle A=\emptyset\;\text{ en }\;A\triangle \emptyset=A\]
For all sets \(A\), \(B\), and \(C\) the following statement is true: \[(A\triangle B)\triangle C=A\triangle (B\triangle C)\]